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Motivation (LDSD: ~ 30 m diameter parachute)

Disksail Parachute Ringsail Parachute

LDSD SFDT-1 2014-06-28 LDSD SFDT-2 2015—06—08}
IRIG Time 21:07:46.806995 IRIG Time 21:37:31.03Qp61

Time from Drop  166.637 s Time from Drop  150.584 s

Mach No. 2.60 Mach No. 2.43 )
Dynamic Pressure 509 Pa Dynamic Pressure 560 Pa
Total AoA 9.6 deg » Total AcA 8.9 deg
SSRS Axial Load 651 Ibf s 5a5c 2014-06-28 21-07-46.806995 SORS Axial Load 424 Ibf \

Low Density Supersonic Decelerator (LDSD) project's Supersonic Flight Dynamics Tests (SFDT)
June 28, 2014 (SFDT 1), and June 8, 2015 (SFDT 2)
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What went wrong?

« SFDT-1 failed at 9,000 Ibf
— 11% of flight limit load

— Analytically showed positive
margins to a load of 80,000 Ibf

« SFDT-2 failed at 79,000 Ibf
— 99% of flight limit load
— Ringsail analytically showed positive
margins to a load of 166,000 Ib
 FLL should be the load at which
the parachute can safely survive
inflation, not its ultimate capabilit

« Both parachutes were subsonically
tested to > 121,000 Ibf!

New failure mode observed during i
supersonic deployment. © Lo ) Lo

Credit: O’Farrell et al., AIAA-2016-3242.
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Overview

* Obijective: Develop a computational framework to
accurately model supersonic parachute deployment that
could be used as a design tool for future space missions

— Mars-relevant supersonic tests are time consuming and
expensive

— Currently not feasible to use tests as part of the design process,
only for validation

« Highly nonlinear Fluid/Structure Interaction (FSI)
problem with large scale deformations

« Rigorous Validation and Verification program is needed
before results can be used for design or validation efforts

« Stanford/JPL Collaboration
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Embedded Boundary Method
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° P rOS : Image Credit: Raunak Borker

— Allows large structural motion or deformation
— Simplifies mesh generation procedure

e Cons:

Huang et al., JCP, 2018

— Difficult to create a mesh that will track a boundary layer without

Adaptive Mesh Refinement (AMR)

— Complicated numerical treatment required for the fluid/structure

interface

2/8/21
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Embedded Boundary Method
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Embedded Surface Numerical Framework

* Finite Volume method with Exact two-material Riemann
Problems (FIVER)
— Huang et al., JCP, 2018, Main et al., JCP, 2017, etc.

* Analytical Riemann problem at fluid/structure interface
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ill-conditioning

Fig. 4.2. Surrogate material interfaces (two-dimensional illustration where a circle filled with a black/white color designates an active/inactive node, and
the continuous and dashed lines in red color represent the true and surrogate material interfaces, respectively): case of the node-based definition of the
status of a node (left); and case of the control-volume-based definition of the status of a node (right).
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Recent Code Additions and Focus

« Supersonic parachute deployment specific updates
— AMR (cite AMR paper)
» Distance to surface

» Hessian criteria
 Intersecting edges

— Porous surface modeling
« Compared to DNS and experimental data

— Smooth forces with embedded framework
— Self-contact
— Minor fixes to run on 1000+ cores

 Simulation Focus

— Preliminary investigation of drag force sensitivity to LES/RANS
modeling

— Effect of suspension lines
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« AERO Suite

— Entry vehicle — embedded surface

System Level Simulation Plan

— Triple bridle, riser, suspension lines, canopy — embedded surface

Center
of Mass

Dy = 14944 (( \,

10.320D) 5= 46.620

Confluence fitting

=0.700-D, K |

A

Triple bridle

5.672

44248

43372

49.920

MSL Parachute Schematic (Cruz et al., AIAA 2013-1250)

2/8/21
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Free Stream Conditions

Original Freestream Updated Freestream
« Gas: CO2 « Gas: CO2
* Density = * Density =
 Mach Number =  Mach Number =
* Pressure = * Pressure =
« Temperature = « Temperature =
« Capsule Re ~= « Capsule Re ~=
 Viscosity — Sutherland’s  Viscosity — Sutherland’s
law law and bulk viscosity

« LES -  LES -

2/8/21 11
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Preliminary Results: Updated Initial Conditions

- Curiosity Rover Data
Parachute without Suspension Lines
— —— Parachute without Suspension Lines(New)

Time (s)

2/8/21 12
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Preliminary Results: RANS vs LES
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Preliminary Results: RANS vs LES
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Curiosity Rover Data
LESInitialized-LES, Shell Model
LESInitialized-LES, Membrane Model
RANSInitialized-RANS, Shell Model
RANSInitialized-LES, Shell Model
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AMR for Suspension Lines

Time: 0.000000
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Preliminary Results: Effect of Suspension Lines

- Curiosity Rover Data
—— Parachute without Suspension Lines
—— Parachute with Suspension Lines

— —— Suspension Lines
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Ongoing Work

« Sensitivity of results to
Initial parachute model
— Geometry

— Pre-stressed or zero stress-
state

e Time required for LES
simulation

* Resolution requirements
(fluid and structure)

2/8/21 19
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Preliminary FSI Simulations
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Preliminary FSI Simulations
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Capsule Simulation

« Recent works have highlighted discrepencies between
numerical simulations and experimental data for compressible
capsule flow (Murman et al., AIAA-2015-1930)

— Influence of turbulence models, surface roughness, mesh
refinement, Riemann solver, etc.

Images taken from Murman et al., AIAA 2015-1930. From left to right: experimental set-up in NASA Ames 11ft
transonic tunnel, comparison between numerical and experimental results, and CFD surface pressure results.
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Capsule Preliminary Results

 Work in progress

. %)702d) candidate for new AERO-F AMR capabilities (Borker et al., AIAA-2018-

« Parachute deployment sensitivities to wake properties is a large unknown

Ji‘
Surface geometry used in AIAA-2015-1930 i Ulat
generously provided by Scott Murman Preliminary Simulation
2/8/21
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